
N95- 14587

COMPARISON OF TRANSFORM CODING METHODS WITH AN

OPTIMAL PREDICTOR FOR THE DATA COMPRESSION OF

DIGITAL ELEVATION MODELS

M. Lewis.

Department of Mathematics and Computing, The University of Glamorgan,

Pontypridd, Mid-Glamorgan, CF37 1DL., U.K.

Tel.U.K. 443 480480 Extn. 2714, Fax: U.K. 443 482711.

Email : MLEWIS@uk.ac.glam

ABSTRACT

Statistical encoding techniques enable the reduction of the number of bits required

to encode a set of symbols, and are derived from their probabilities. Huffman

encoding [1] is an example of statistical encoding that has been used for error-free

data compression. The degree of compression given by Huffman encoding in this

application can be improved by the use of prediction methods. These replace the set

of elevations by a set of corrections that have a more advantageous probability

distribution. In particular, the method of Lagrange Multipliers for minimisation of

the mean square error has been applied to local geometrical predictors [3]. Using

this technique, an 8-point predictor achieved about a 7% improvement over an

existing simple triangular predictor [2].

In this paper, comparisons have been made between this predictive encoding

methods and a transform coding technique, the Two-Dimensional Discrete Cosine

Transform (2D-DCT). Transform coding allows greater compression but is

computationally intensive and is subject to a greater degree of error on

reconstruction of the data The Discrete Cosine Transform coding method can be

combined with either Huffman encoding or Run Length Encoding (RLE) of the

DCT coefficients to achieve greater compression. The method of blocking the DCT

coefficients before Huffman encoding gives a better performance than Run Length

encoding of the DCT coefficients The best compression achievable for the same

data set using the slow DCT algorithm with blocking is about 35.24:1, i.e. a storage

saving of 96.49% for at most an error of 5 metres and a root mean square error

(rmse) of 0.5. For error-free compression (accurate to the nearest metre), the simple

prediction method [2] gives a compression ratio of 13.04:1 with blocking the

prediction errors before Huffman encoding. This gives a storage saving of about

92.30%. Similar results for a second more variable data set give a compression ratio

of 17.60:1 or a storage saving of 94.12%, again for an equivalent maximum error of
about 5 metres and an rmse of about 0.8. In the error-free Huffman method with

blocking, equivalent results for the second data set are a compression ratio of about

7.13:1 and a storage saving of 85.93%. The Lagrange Multiplier method [3] will give

an improvement of about 7% to the error-free compression ratios quoted. Since

both these algorithms are computationally expensive, a trade-off between



maximum compression ratio and speed of compression/decompression must be
made.

The use of another transform technique, the two dimensional Daubechies Wavelet
transforms [4,5] shows similar performances with further blocking of the
coefficients before Huffman encoding. The best performance for the first data set
was a storage saving of 96.04% or a compression ratio of about 30:1 with the 12-
coefficient ('smooth') transform with at most an error of 3 metres and a root mean
square error (rmse) of 0.5. For the second more variable data set, a storage saving of
92.33% or a compression ratio of about 13:1with the 4-coefficient ('local') transform.
Here the maximum error is 3 metres with an rmse of 0.8. Further evaluation with
other wavelet transforms is being studied as well as improved preprocessing of data
to improve predictor efficiencies.

1. Data Compression in Digital Terrain Models.

The main emphasis in this work has not been on the encoding methods

themselves but on the prediction methods specific to terrain that allow the coding

methods to work better. Two transformation methods and one statistical encoding

method have been chosen to apply to DEM's. These methods have been chosen

because they have the potential to form robust data compression schemes with both

good compression performance and moderate to good computational

requirements.

In general, an estimate of the maximum amount of compression achievable in an

error-free encoding process can be made by dividing the average number of bits

needed to represent each terrain height in the original source data by a first-order

estimate of the entropy of the prediction error data. Since there is in general a large

degree of redundancy in the source data, the prediction process enables a reduction

in the entropy value through this mapping process due to the probability density

function of the prediction errors being highly peaked at zero and characterised by a

relatively small variance.

In order to reduce the overall amount of data needed for storage, a prediction

algorithm is employed. Since there is a close correlation between adjacent height

values in a DTM, the differences between the actual and predicted values can be

represented by fewer bits than the original data. These differences between the

predictions and the actual elevations are recorded and Huffman encoded. Some
base elevations such as two known axes of elevations are also stored.

One approach to the error-free compression of digital elevation data (DEM)

involves the use of an identical predictor for both encoding and decoding processes.

A terrain surface is normally considered to be a two-dimensional array

representation of height values. Another approach to the design of an optimum

predictor proved this triangular predictor to be sub-optimal and a better predictor

10



was devised using the method of Lagrange Multipliers [3]. ST06 and ST08 are two
tiles taken from the Ordnance Survey regular 401x401 square grid with terrain
heights accurate to the nearest metre. The former tile contains sea, coastal cliffs and
relatively smooth changes in contours whilst the latter contains rougher terrain
with deep valleys with large changes in contour values. A small improvement can
be made to the simple triangular predictor method for both the three-point and
eight-point predictors by the minimisation method of Lagrange multipliers. For
many data sets compression ratios above 4 or 5 are easily achievable using a error-
free Huffman encoding algorithm with minor modification to the code given in [2].

2.0 Application of a Transformation Method to a Digital Elevation
Model.

2.1. Performance of the Two Dimensional Discrete Cosine Transform

(2D-DCT).

The prediction/Huffman method described above is suitable for error-free

encoding. The DCT method normally gives some error even without explicit

quantisation. This is due to the representation of the real coefficients as integers. If

the method were modified to make it error-free, it would give no compression. As

well as evaluating various DCT methods, it is interesting to compare the DCT and

prediction methods when error-free compression is not required. The

prediction/Huffman method can be used in a lossy way whereby elevations are

grouped into bands, e.g.

Band Elevations (m) Representative Elevation (m)

0 0 0.0

1 12345 3.0

2 678910 8.0

3 1112131415 13.0

with a maximum error of 2.0 metres.

The bands are then used for prediction and correction. The maximum errors are

small but the root mean square error (rmse) may be relatively large as most of the

elevations may be in error. Note is also made that in some of the results in this

section, the elevations have been divided by 2 before encoding, whereas in others

the original elevations are used. In general, the entropy is smaller if the elevations

have been divided by 2.

Tables 1A and 1B illustrate the effect of applying the Huffman encoding algorithm

11



to ST06 and ST08 after using the triangular prediction algorithm [2] when banding
is used. A further improvement of up to 7% is possible by the use of the Lagrange
Multiplier method [3]. It is evident that the blocking method is successful in
reducing the average code length when the code efficiency is otherwise low.

2.2. Comvarative Results usin_ the Two Dimensional Discrete Cosine
A

Transform Algorithm with Blocking for Huffman Encoding.

Discrete Cosine Transform techniques are data independent and samples in the

transform domain are selected, quantised and coded according to the number of bits

needed for compression. Here acceptable results are obtained for a wide range of

compression ratios. Several studies were made using the Discrete Cosine

Transform. Various subgrids were selected from ST06 and ST08 typically of size

16,32 and 64 square and the 2D-DCT and its inverse applied to increasingly varied

terrain topography. The reconstructed terrain was compared graphically with the

original. Further compression can be achieved by Huffman encoding the reduced

set of coefficients. The errors introduced on decompression by the application of the

inverse transform were variable with the largest range in height error appearing

with the greatest compression ratio. Moreover, there was no visible detectable

structure or linear relationship in the reconstructed errors but the source of the

greatest error was associated with sharp changes in terrain profile i.e. valley sides
and coastal cliff areas.

The 2D-DCT was encoded into an Ada program written specially for this study. The

results presented here are for the case when 8x8 cells are used, but other sizes can be

used. Quantisation values are not used, and relative coding of DC coefficients is

optional. The algorithm is also combined with Huffman encoding. The effect of

blocking the DCT coefficients prior to Huffman encoding was investigated. Again

the data sets used were ST06 and ST08 and the DCT operation typically produces

accuracy errors when the coefficients are converted to integers before Huffman

encoding and back to floating point numbers before the inverse DCT transform is

applied. The Huffman encoding of coefficients itself is error-free and reversible.

These accuracy errors are duly noted as is the effect of banding the coefficients

before Huffman encoding into sets of size 1-4. All the results in Table 2 are from

applying these two algorithms to the original terrain height data using a window of

size 8x8 'pixels'. In Table 3, the methods were applied to terrain data values firstly

divided by 2 to reduce the range of coefficient values produced by the DCT

transform for further comparative analysis with Tables 1A and lB. Table 4 again

shows equivalent results only this time 'differencing' was applied to the DCT term

in each 8x8 window along each row-block and relative to the (0,0) position.

Interestingly this worked well for ST08 but not for ST06. This was due to the overall
reduction in scale for the DC coefficient values for ST08 that didn't affect ST06 since

ST06 already had many more zero valued coefficients. This was based on the large

number of zero values for sea areas in the original terrain.

12



2.3. Discussion on Efficiency Comparison.

In general combining these algorithms with blocking (Tables 2 &3) produced the

best results. Since we are looking at code efficiencies close to 1, blocking the symbols

overcomes the decrease in code efficiency when the entropy is less than 1 bit per

symbol. In ST06, the algorithms (without 'differencing') produced the lowest

entropy and average code length of 0.4540 and 0.5620 of a bit per coefficient (and

hence bit per elevation) respectively. This is equivalent to a storage saving of

96.49% with a decompression error due to storage accuracy of the DCT coefficients
of +5 metres, a mean of 0.0011, an rmse of 0.5210 and a standard deviation of 0.5210

(with MINITABTM). Furthermore, one can compare with the prediction plus
Huffman method of Tables 1A & 1B which have error values of +6 metres, a mean

of 1.0178, an rmse of 2.4042 and a standard deviation of 2.1715. This corresponds to

an entropy value of 0.5013, an average code length of 0.5507 bits per elevation and a

storage saving of 96.56%. The error distribution for the former DCT hybrid methods

tend to be gaussian in form with the peak becoming more rounded as the

coefficients are grouped into larger sets. In the latter prediction hybrid methods to

include errors, the error profile can be said to be 'flat' in form. In ST08, the best

performance for comparative measures comes from Table 4. Using the DCT method

and a blocksize of 4 for Huffman encoding of the coefficients, an entropy of 0.9091

and an average code length of 0.9409 bit per coefficient (bit per elevation)

corresponds to a storage saving of 94.12%. Noted is the fact that the efficiency of the

Huffman encoding algorithm decreases when the block size is greater than 3 for

ST08. The error profile gives a maximum error range of about 5 metres, a mean of

0.003, an rmse of 0.7898 and a standard deviation of 0.7893 (see below). Here, for

comparative results we must look at Table 4B and an error range of + 4 (actual 8)

metres. In this case, blocking by 4 to give an entropy of 0.9383 bit per elevation and

an average code length of 0.9450 bits per elevation achieves a storage saving of

94.09%. However, the overall errors are much bigger: the rmse is 2.5974 and the
standard deviation is 2.5909.

The conclusion to be drawn from these results is that for lossy compression, the

DCT/Huffman method gives the best compromise between compression and error,

but only when blocking takes place before Huffman encoding. This may however,

create a computational overhead that makes the method unattractive in practice.

13



Huffman Encoding with Allowable Errors, using Error Banding and the

Triangular Prediction Algorithm [3].

(Heights/2 )

ST06

Error Entropy Average Code Storage

Range Blocksize (bits/elevation) Code Efficiency Saving

_+m Length (%) (%)
(Rmse) (bits/elevation)

1 1 1.3910 1.5642 88.9304 90.2239
2 1.3273 1.3443 98.7376 91.5984

(0) 3 1.2760 1.2807 99.6340 91.9957

4 1. 2268 1.2313 99. 6328 92.3041

2 1 0.8914 1.2789 69.7018 92.0069

2 0.8418 0.9251 90.9994 94.2183

(0.8904) 3 0.8059 0.8334 96.6923 94.7910
4 0.7823 0.7938 98.5473 95.0387

4 1 0.7052 1.2003 58.7541 92.4980

2 0.6613 0.7983 82.8448 95.0108
(1.6860) 3 0.6319 0.6888 91.7354 95.6947

4 0.6114 0.6411 95.3641 95.9931

6 1 0.5809 1.1535 50.3590 92.7905
2 0.5434 0.7291 74.5297 95.4433

(2.4042) 3 0.5167 0.6034 85.6364 96.2287

4 0.5013 0.5507 91.0170 96.5579

8 1 0.4936 1.1231 43.9531 92.9809
2 0.4598 0.6840 67.2177 95.7250

(3.1391) 3 0.4361 0.5499 79.3044 96.5632
4 0.4236 0.4918 86.1303 96.9260

10 1 0.4186 1.0991 38.0836 93.1303

2 0.3861 0.6473 59.6486 95.9545
(3.9149) 3 0.3694 0.5072 72.8387 96.8301

4 0.3551 0.4419 80.3544 97.2380

Table 1A.

14



Huffman Encoding with Allowable Errors, using Error Banding and the

Triangular Prediction Algorithm [3].

(Heights / 2)

ST08

Error Average
Range Blocksize Entropy Code Storage

(bits/elevation) Code Efficiency Saving
+ rn Length (%) (%)
(Rinse) (bits/elevation)

1 1 2.3689 2.4386 97.1401 84.7585
2 2.3376 2.3563 99.2034 85.2730

(0) 3 2.3043 2.3133 99.6112 85.5416
4 2.2444 2.2513 99.6947 85.9293

2 1 1.5201 1.6559 91.8011 89.6509
2 1.4780 1.5084 97.9854 90.5724

(0.8173) 3 1.4531 1.4621 99.3861 90.8619
4 1.4342 1.4435 99.3570 90.9784

4 1 1.3074 1.5187 86.0840 90.5082
2 1.2456 1.2700 98.0804 92.0626

(1.4549) 3 1.2139 1.2364 98.1864 92.2728

4 1.1900 1.1963 99.4770 92.5234

6 1 1.1697 1.4334 81.6063 91.0412
2 1.1012 1.1316 97.3092 92.9273

(2.0005) 3 1.0664 1.0758 99.1217 93.2762

4 1.0394 1.0548 98.5455 93.4077

8 1 1.0667 1.3738 77.6409 91.4136
2 1.0015 1.0440 95.9312 93.4751

(2.5974) 3 0.9649 0.9709 99.3886 93.9322
4 0.9383 0.9450 99.2922 94.0937

10 1 0.9742 1.3247 73.5369 91.7204
2 0.9121 0.9726 93.7827 93.9214

(3.9149) 3 0.8751 0.8841 98.9866 94.4744
4 0.8500 0.8537 99.5640 94.6643

Table lB.

15



Two Dimensional Discrete Cosine

Transform (_)with Huffman Encoding

of Coefficients.

(Original Heights, 8x8 windows)

ST06

Block-size

1
2

3

4

Entropy Average Code Storage
(bits/ Code Efficiency Saving

Coefficient) Length (bits/ (%) (%)
Coefficient)

0.998178 1.4731 67.7598 90.7930
0.840046 1.0229 82.1276 93.6072

0.835856 0.9178 91.0756 94.2640
0.620969 0.6870 90.3936 95.7065

Error Range (metres) on Reconstruction

through Rounding before Huffman

Encoding:-

Max = 5.0000

Min = -5.1875
Mean -- - 0.003

Rmse = 0.6716

ST08

Block-size

Entropy Average
(bits/ Code

Coefficient) Length (bits/
Coefficient)

Code

Efficiency
(%)

Storage
Saving
(%)

2.069000 2.2048 93.8423 86.2200

1.775474 1.7967 98.8210 88.7709

1.742708 1.7478 99.7080 89.0762

1.248854 1.2528 99.6853 92.1700

Error Range (metres) on Reconstruction

through Rounding before Huffman

Encoding:-

Max = 4.7082

Min = -4.4846
Mean = - 0.0013

Rinse = 0.9726

Table 2.

16



Two Dimensional Discrete Cosine

Transform (:_) with Huffman Encoding
of Coefficients

(Heights/2, 8x8 Windows)

ST06

Block-size
Entropy Average Code
(bits/ Code Efficiency

Coefficient) Length (bits/ (%)
Coefficient)

Storage
Saving
(%)

0.650300 1.2818 50.7309
0.541816 0.8142 66.5469
0.554087 0.6928 79.9790

0.454014 0.5620 80.7887

91.9885
94.9113
95.6701

96.4876

Error Range (metres) on Reconstruction
through Rounding before Huffman

Encoding:-

Max = 5.0939
Min = -5.0300
Mean = 0.0011
Rmse = 0.5210
148630 Zero Coefficients

ST08

Block-size
Entropy
(bits/

Coefficient)

Average Code Storage

Code Efficiency Saving
Length (bits/ (%) (%)
Coefficient)

1
2
3

4

1.401504 1.7376 80.6574 89.1400
1.178912 1.2883 91.5101 91.9482
1.180569 1.2142 97.2263 92.4109
0.909866 0.9417 96.6206 94.1144

Error Range (metres) on Reconstruction
through Rounding before Huffman

Encoding:-

Max -- 6.1186
Min = -4.5141

Mean = 0.0030
Rmse -- 0.7898
132146 Zero Coefficients

_tTypical Calculation Time for Slow Algorithm:
Forward DCT 5m lsec., Inverse DCT 5m 46 secs.

Table 3.

17



Two Dimensional Discrete Cosine

Transform (:1:)with Huffman Encoding
of Coefficients.

(Heights/2, 8x8 Windows with DC Term Row Differencing)

ST06

Block-size
Entropy Average Code Storage

Code Efficiency Saving
(bits/ Length (bits/ (%) (%)

Coefficient) Coefficient)

1 0.6591 1.2874 51.1960 91.9539

2 0.5531 0.8226 67.2388 94.8587
3 0.5652 0.7017 80.5411 95.6142

4 0.4650 0.5708 81.4715 96.4327

Error Range (metres) on Reconstruction
through Rounding before Huffman

Encoding:-

Max -- 5.0939
Min = -5.0300

Mean = 0.0011
Rmse = 0.5210

148496 Zero Coefficients

ST08

Block-size
Entropy
(bits/

Coefficient)

Average Code Storage

Code Efficiency Saving
Length (bits/ (%) (%)
Coefficient)

1 1.3941
2 1.1755
3 1.1777

4 0.9091

1.7303 80.5700 89.1856

1.2848 91.4876 91.9697
1.2114 97.2189 92.4290

0.9409 96.6204 94.1194

Error Range (metres) on Reconstruction

through Rounding before Huffman
Encoding:-

Max = 6.1186

Min = -4.5141
Mean = 0.0030
Rmse = 0.7898

132146 Zero Coefficients

STypical Calculation Time for Slow Algorithm:
Forward DCT 5m lsec., Inverse DCT 5m 46 secs.

Table 4.

18



3.0. The Use of Wavelet Transforms for the Data Compression of

DEM's.

The key idea with wavelet transforms is in the formation of classes of signals into

weighted sums of basis functions (complex exponentials for the Fourier Transform

and cosines for the Cosine Transform). In contrast to traditional Fourier theory, the

basis functions are formed by scaling and translating a single function and the

mathematical properties of the decomposition are determined by the properties of

the underlying function. Thus unlike sines and cosines, which define an unique

Fourier or Cosine transform, there is not one single unique set of wavelets; in fact,

there are infinitely many possible sets. A particular set of wavelets is specified by a

particular set of numbers, called wavelet filter coefficients. One such simple set

comes from a class discovered by Daubechies [4] which include members ranging

from being highly localised to highly smooth. Press [5] describes both the

transformation methods for the simple case and how the Discrete Wavelet

Transform (DWT) is formalised. Compact (and therefore unsmooth) wavelets are

better for lower accuracy approximation and for functions with discontinuities (like

edges), while smooth (and therefore non-compact) wavelets are better for

achieving high numerical accuracy. By taking a multi-dimensional wavelet

transform of an image, compression is achieved by bit allocation amongst the

coefficients in some highly non-uniform, optimised way. In general, large wavelet

coefficients are quantised accurately, whilst small coefficients are quantised coarsely

with only a bit or two or may even be truncated completely. If the resulting

quantisation levels are still statistically non-uniform, they may then be further

compressed by a technique such as Huffman encoding. When a smooth and coarser

wavelet transform are applied to a DEM, the performance is much the same in

terms of reconstruction error from accuracy and compression ratio. There is

however a slight improvement in computation time.

19



Two Dimensional 4-Coefficient

('Localised') Daubechies Wavelet

Transform with Huffman Encoding
of Coefficients.

(Original Heights)

ST08

256x256 subset

Block-size

Entropy

(bits/
Coefficient)

Average Code Storage

Code Efficiency Saving
Length (bits/ (%) (%)
Coefficient)

1 3.3885 3.4170 99.1654 78.6438

2 3.0484 3.0666 99.4068 80.8335
3 2.6881 2.6994 99.5842 83.1290
4 • 1.8727 1.8807 99.5721 88.2456

Invertible Wavelet Transform.

Error Range (metres) on Reconstruction
through Rounding before Huffman

Encoding:-

32093 'Zero' Coefficients, ST08 Coordinates (10,10).
Typical Transform Calculation time 20 secs.

• Typical computation time 3 mins (DEC Mpha).

Max = 3.0

Min = -2.0

Mean = 0.50
Rmse = 0.79
Stdev = 0.61

Table 5.

20



Two Dimensional 12-Coefficient

('Smooth') Daubechies Wavelet

Transform with Huffman Encoding
of Coefficients.

(Original Heights/2)

ST06

256x256 subset

Block-size

Entropy
(bits/

Coefficient)

Average Code Storage
Code Efficiency Saving

Length (bits/ (%) (%)
Coefficient)

1 1.0261 1.5070 68.0902 90.5815
2 0.8619 1.0489 82.1721 93.4443
3 0.7425 0.8438 88.0017 94.7265
4 • 0.5383 0.6335 84.9665 96.0406

lnvertible Wavelet Transform.

Error Range (metres) on Reconstruction

through Rounding before Huffman
Encoding:-

Max = 2.0

Min = -3.0
Mean = -0.26658

Rmse = 0.56420
Stdev = 0.49784

57829 'Zero' Coefficients, ST06 Coordinates (0,0).

Typical Transform Calculation time 20 secs.

• Typical computation time 3 rains (DEC Alpha)

Table 6.

21



Two Dimensional 12-Coefficient

('Smooth') Daubechies Wavelet

Transform with Huffman Encoding
of Coefficients.

(Original Heights/2)

ST06

256x256 subsets

Block-size
Ave rage Cod e Sto rage

Entropy Code
Efficiency Saving

(Bits/ Length (Bits/ (%) (%)
Coefficient) Coefficient)

Coordinates(0,0)

1 1.0261 1.5070 68.0902 90.5815

2 0.8619 1.0489 82.1721 93.4443
3 0.7425 0.8438 88.0017 94.7265
4 • 0.5383 0.6335 84.9665 96.0406

Coordinates(O,144)

1 0.9633 1.4743 65.3437 90.7859
2 0.8001 1.0047 79.6315 93.7203

3 0.6830 0.7983 85.5519 95.0103

4 0.4817 0.5833 82.5810 96.3542

Coordinates (144,0)

1 1.3991 1.7360 80.5957 89.1500
2 1.1993 1.3067 91.7783 91.8329

3 1.0436 1.0935 95.4397 93.1658
4 0.7606 0.8132 93.5356 94.9174

Coordinates (144,144)

1 1.3251 1.6937 78.2379 89.4145
2 1.1294 1.2551 89.9883 92.1556
3 0.9791 1.0402 94.1217 93.4985

4 0.7308 0.7924 92.2235 95.0475

Typical Transform Calculation time 20 secs.
• Typical Computation time 3mins.

(DEC Alpha)

Invertible Wavelet Transform.

Error Range (metres) on Reconstruction through

Rounding before Huffman Encoding:-

Max = 2.0
Min = -3.0

Mean = -0.26658

Rmse = 0.56420
Stdev = 0.49784

Table 7.

22



Two Dimensional 4-Coefficient

('Localised') Daubechies Wavelet

Transform with Huffman Encoding

of Coefficients.

(Original Heights/2)

ST08

256x256 subsets

Block-size
Entropy Average Code Storage
(Bits/ Code Efficiency Saving

Length (Bits/ (%) (%)
Coefficient) Coefficient)

Coordinates (0,0)

1 2.2938 2.4014 95.5188 84.9915

2 2.0289 2.0447 99.2277 87.2208
3 1.7923 1.8012 99.5079 88.7426
4 • 1.2202 1.2268 99.4639 92.3325

Coordinates (0,144)

1 2.2078 2.3358 94.5171 85.4010

2 1.9512 1.9723 98.9299 87.6732

3 1.7220 1.7307 99.4990 89.1834

4 • 1.2285 1.2377 99.2570 92.2645

Coordinates (144,0)

1 2.5926 2.6566 97.5900 83.3962

2 2.3031 2.3140 99.5265 85.5372
3 2.0367 2.0517 99.2679 87.1770
4 • 1.3939 1.3970 99.7746 91.2684

Coordinates (144,144)

1 2.2902 2.4022 95.3366 84.9862

2 2.0291 2.0459 99.1780 87.2130
3 1.7932 1.8020 99.5095 88.7375

4 • 1.2568 1.2636 99.4646 92.1026

• Typical Computation time =3 mins
Typical Transform Calculation time 20 secs. (DEC Alpha)

Invertible Wavelet Transform.

Error Range (metres) on Reconstruction through

Rounding before Huffman Encoding:-

Max = 3.0
Min = -2.0

Mean = 0.50433

Rmse = 0.7879
Stdev = 0.60534

Table 8.

23



3.1. Results.

Both sets of test data were partitioned into subsets of 256x256 arrays and both the
two-dimensional 'localised' 4-coefficient and the 'smooth' 12-coefficient Daubechies

wavelet transform were applied in turn to each data set. In all cases the resulting

coefficient matrices were Huffman encoded with statistical analyses made as

described above. The only errors on reconstruction were due to the rounding of the

coefficients before Huffman encoding leading to some loss of accuracy on

reconstructing the original data.

Table 5 shows the results of applying the 'localised' Daubechies wavelet transform

to a typical subset of ST08 using the original terrain heights in the data vector. This

'localised' transform performed better than the 'smoother' transforms (12 and 20

coefficient) on the rougher terrain data and the results for storage savings can

therefore be compared to using the Two-Dimensional Discrete Cosine Transform

(2D-DCT) in Table 2. This method together with blocking the coefficients before

Huffman encoding achieves an average code length of 1.8807 bits per coefficient

compared with 1.2528 bits per coefficient for the 2D-DCT case. This in turn gives the

comparative storage savings of 88.25% and 92.17 respectively. The advantage that

the wavelet method has over the DCT method is in the efficiency of the algorithm,

it is much faster even when blocking is done. In the same light, Table 6 where the

original heights of ST06 are divided by 2, can be compared to the results in the top
half of Table 3. For ST06, the 'smoother' 12-coefficient wavelet transform worked

best. Although, the matrices are of differing sizes, again the results are marginally

inferior in terms of average code length but the final storage savings are about the
same (96%). Tables 7 and 8 describe in full the results for the four 256x256

overlapping squares from ST06 and ST08 for original terrain data divided by 2, the

smother wavelet working better on the smoother terrain of ST06 and the more

localised wavelet best on the more varied landscape of ST08.

The results overall are marginally worse than with the 2D-DCT if one compares

Tables 2 & 3 with Tables 6 or Table 7. Indeed when the accuracy errors are compared

with Tables 4A and 4B where errors are introduced (through banding) into the data

prior to the prediction algorithm and Huffman encoding, still gives the prediction

method an advantage over the transformation methods. For example, in a typical
subset of ST08, the 4-coefficient Daubechies wavelet transform with Huffman

encoding of the coefficients (when the coefficients are blocked into sets of four),

gives an entropy value of 1.8727 bits per coefficient and a storage saving of 88.25%.

This is when the min./max, error is 3 and -2 metres and the rmse is 0.79 (Table 12).

Table 4B shows the equivalent performance when the prediction algorithm and

error banding is used for ST08. In this case for a max./min, error of 2 metres and an

rmse of 0.8173, comparative results with blocking sets of prediction errors into sets

of 4 gives an entropy of 1.4342 bits/elevation and a storage saving of 90.98%.

Although the rmse values are about the same, the range of errors is much smaller.

24



4.0. Summary of Research.

Comparisons have been made between these predictive encoding methods and a

transform coding technique, the Two-Dimensional Discrete Cosine Transform (2D-

DCT). Transform coding allows greater compression but is computationally

intensive and is subject to a greater degree of error on reconstruction of the data.

The Discrete Cosine Transform coding method can be combined with either

Huffman encoding or Run Length Encoding (RLE) of the DCT coefficients to

achieve greater compression. Further compression can be achieved when using the

Huffman DCT method by blocking the transformation coefficients. The method of

blocking the DCT coefficients before Huffman encoding gives a better performance

than Run Length encoding of the DCT coefficients The best compression achievable

for one data set (ST06) using the DCT algorithm with blocking is about 35.24:1, i.e. a

storage saving of 96.49% for at most an error of 5 metres and a root mean square

error (rmse) of 0.5. For error-free compression (accurate to the nearest metre), the

simple prediction method [2] gives a compression ratio of 13.04:1 with blocking the

prediction errors before Huffman encoding. This gives a storage saving of about

92.30%. Similar results for a second more variable data set (ST08) using the DCT

algorithm, give a compression ratio of 17.60:1 or a storage saving of 94.12%, again

for an equivalent maximum error of about 5 metres and an rmse of about 0.8. In

the error-free Huffman method with blocking, equivalent results for the second

data set (ST08) are a compression ratio of about 7.13:1 and a storage saving of

85.93%. The wavelet transform method tested produces similar but marginally

inferior results compared to the 2D-DCT. The Lagrange Multiplier method [3] will

give an improvement of about 7% to the error-free compression ratios quoted.

There remain a large number of possible variations on the method, including the

use of arithmetic, adaptive Huffman or adaptive arithmetic coding in place of static

Huffman encoding. Wavelet transforms give similar results to the DCT but are

much more efficient. Since both these algorithms are computationally expensive, a

trade-off between maximum compression ratio and speed of

compression/decompression must be made.

Current work involves looking at different families of wavelets for compression

and developing efficient heuristic algorithms to selectively constrain the terrain

topography to improve prediction methods.

[1] Huffman D.A. "A Method for the Construction Of Minimum Redundancy

Codes". Proc. IRE, Vol. 40, 1952. pp.1098-1101.

[2] Kidner D.B. & Smith D.H. "Compression of Digital Elevation Models by

Huffman Encoding"; Computers & Geosciences, Vol. 18., No. 8, pp.1013-1034, 1992.

[3] Lewis M. & Smith D.H. "'Optimal Predictors for the Data Compression of Digital

25



Elevation Models Using the Method of Lagrange Multipliers". pp. 246-256. Proc

Auto Carto 11, Oct. 30-Nov 3rd 1993, Minneapolis, Minnesota,USA.

[4] Daubechies I., 1988 Commun. Pure & Applied Maths, vol.44, pp.141-183.

[5] Press W°H., "Wavelet Transforms", 2nd Edition of Numerical Recipes:The Art of

Scientific Computing. Harvard-Smithsonian Center for Astrophysics. Cambridge
Mass.

[6] Nelson M.R. The Data Compression Book. Prentice Hall 1991.

26


